welcome to RAEGE
Recent Photos
  • Map of RAEGE stations
  • RAEGE Jorge Juan cartel
  • RAEGE Jorge Juan
  • VGOS backends

GNSS

GNSS receivers detect, decode, and process signals from the GNSS satellites (e.g., currently GPS and GLONASS and, in the future, Galileo). The satellites transmit the ranging codes on two radio-frequency carriers, allowing the locations of GNSS receivers to be determined with varying degrees of accuracy, depending on the receiver and post-processing of the data.

The current GPS constellation includes 24 satellites, each traveling in a 12-hour, circular orbit, 20,200 kilometers above the Earth. The satellites are positioned so that six are observable nearly 100% of the time from any point on Earth. The current GLONASS constellation includes less than 20 satellites, each traveling in a circular orbit, 19,140 kilometers above the Earth. The satellites are positioned so that four are observable nearly 100% of the time from any point on Earth.

The current global IGS network consists of several hundred permanent GNSS (GPS and GPS+GLONASS) receivers. High-accuracy measurements of the change in receiver locations over time allow researchers to study the motions of tectonic plates, displacements associated with earthquakes, and Earth orientation.

The International GPS Service (IGS) has developed a global system of tracking stations, data centers, and analysis centers to put high-quality GPS (and GPS+GLONASS) data on-line within one day and data products on line with two to ten days of observations. The purpose of this international service is to provide GPS data products and highly accurate ephemerides to the global science community to further understanding in geophysical research. The IGS has demonstrated the near real-time capability of the global GPS community to retrieve data and produce products (e.g., satellite ephemerides and Earth rotation parameters) that are of use to a broader community.

Some of the scientific uses of GNSS data include:

·         Maintenance of global accessibility to, and the improvement of, the International Terrestrial Reference Frame (ITRF)

·         Monitoring deformations of the solid Earth

·         Monitoring Earth rotation

·         Monitoring variations in the liquid Earth (sea level, ice sheets, etc.)

·         Precise GPS satellite orbit and clock determinations for analysis of regional GPS campaigns

·         Monitoring of the ionosphere and troposphere

·         Precise time transfer

GNSS Galileo constellation